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Abstract: In this paper, some theorems of edge regular fuzzy graphs are discussed with

their complements and µ-complements. A necessary and sufficient condition under which they

are equivalent is provided. Finally, adjacency sequence of edges in a fuzzy graph is defined.

Using the sequences, characterization for a fuzzy graph with at most four vertices to be edge

regular is obtained.
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1. Introduction

Fuzzy graph theory was introduced by Azriel Rosenfeld in 1975 [8]. Though it
is very young, it has been growing fast and has numerous applications in var-
ious fields. During the same time Yeh and Bang have also introduced various
connectedness concepts in fuzzy graphs [10]. Mordeson (1994) introduced the
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concept of complement of fuzzy graphs [2]. M. S. Sunitha and A. Vijayakumar
(2002) gave a modified definition of complement of fuzzy graph [9]. A. Nagoor-
gani and V. T. Chandrasekaran (2006), defined µ-complement of a fuzzy graph
[3], which is slightly different from the definition of complement of a fuzzy graph
discussed by M. S. Sunitha and A. Vijayakumar. A. Nagoorgani and K. Radha
defined the concept of incidence sequence of vertices in a fuzzy graph (2008)
[6]. K. Radha and N. Kumaravel (2014) introduced the concept of edge regu-
lar fuzzy graphs [7]. In this paper, we provide some theorems on edge regular
property of complements and µ-complements of fuzzy graphs through various
examples. We introduce edge adjacency sequence in a fuzzy graph and we use
this sequence to study about the edge regular property of fuzzy graphs. First
we go through some basic definitions in the next section.

2. Basic Concepts

Let V be a non-empty finite set and E ⊆ V × V . A fuzzy graph G : (σ, µ) is a
pair of functions σ : V → [0, 1] and µ : E → [0, 1] such that µ(xy) ≤ σ(x)∧σ(y)
for all x, y ∈ V. Let G : (σ, µ) be a fuzzy graph on G∗ : (V,E). The degree
of a vertex x is dG(x) =

∑

x 6=y µ(xy). The minimum degree of G is δ(G) =
∧{dG(x),∀x ∈ V } and the maximum degree of G is ∆(G) = ∨{dG(x),∀x ∈ V }.
Let G : (σ, µ) be a fuzzy graph on G∗ : (V,E). The total degree of a vertex x
is defined by tdG(x) =

∑

x 6=y µ(xy) + σ(x).
Let G : (σ, µ) be a fuzzy graph on G∗ : (V,E). If each vertex in G has same

degree k, then G is said to be a regular fuzzy graph or k-regular fuzzy graph. If
each vertex in G has same total degree k, then G is said to be a totally regular
fuzzy graph or k -totally regular fuzzy graph.

Let G : (σ, µ) be a fuzzy graph on G∗ : (V,E). The degree of an edge
xy ∈ E is

dG(xy) =
∑

x 6=z

µ(xz) +
∑

z 6=y

µ(zy)− 2µ(xy).

The total degree of an edge xy ∈ E is

dG(xy) =
∑

x 6=z

µ(xz) +
∑

z 6=y

µ(zy)− µ(xy).

Let G : (σ, µ) be a fuzzy graph on G∗ : (V,E). If each edge in G has same
degree k, then G is said to be an edge regular fuzzy graph or k-edge regular
fuzzy graph. If each edge in G has same total degree k, then G is said to be a
totally edge regular fuzzy graph or k-totally edge regular fuzzy graph.
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The order and size of a fuzzy graph G are defined by O(G) =
∑

x∈V σ(x)
and S(G) =

∑

xy∈E µ(xy).
A fuzzy graph G is strong, if µ(xy) = σ(x) ∧ σ(y) for all xy ∈ E. A fuzzy

graph G is complete, if µ(xy) = σ(x) ∧ σ(y) for all x, y ∈ V .
Let G be a fuzzy graph. The complement of G is defined as G : (σ, µ),

where
µ(xy) = σ(x) ∧ σ(y)− µ(xy),

for all x, y ∈ V . The µ-complement of G is defined as Gµ : (σ, µµ), where

µµ(xy) =

{

σ(x) ∧ σ(y)− µ(xy), ∀xy ∈ E,

0, ∀xy /∈ E.

The incidence sequence of a vertex v in a fuzzy graph G is defined as a
sequence of membership values of edges incident to v arranged in increasing
order. It is denoted by is(v).

3. Edge Regular and Totally Edge Regular Property

of Complements

Remark 1. IfG : (σ, µ) is an edge regular fuzzy graph, thenG : (σ, µ) need
not be edge regular fuzzy graph. For example, consider G∗ : (V,E) where V =
{a, b, c, d} and E = {ab, bc, bd, cd, da}. Define G : (σ, µ) by σ(a) = 0.9, σ(b) =
1, σ(c) = 0.8, σ(d) = 0.9 and µ(ab) = 0.4, µ(bc) = 0.5, µ(bd) = 0.9, µ(cd) =
0.5, µ(da) = 0.4. Then G : (σ, µ) is defined by µ(ab) = 0.5, µ(bc) = 0.3, µ(ac) =
0.7, µ(cd) = 0.3, µ(da) = 0.5. Here dG(ab) = 1.8, for all ab ∈ E, but in G :
(σ, µ), dG(ab) = dG(bc) = dG(cd) = dG(da) = 1.5, dG(ac) = 1.6 and tdG(ab) =
2, tdG(bc) = 1.8, tdG(cd) = 1.8, tdG(da) = 2, tdG(ac) = 2.3. Therefore G : (σ, µ)
is 1. 8 - edge regular fuzzy graph, but G : (σ, µ) is neither edge regular fuzzy
graph nor totally edge regular fuzzy graph.

Remark 2. If G : (σ, µ) is totally edge regular fuzzy graph, then G : (σ, µ)
need not be edge regular fuzzy graph. For example, consider G∗ : (V,E)
where V = {a, b, c, d} and E = {ab, ac, ad}. Define G : (σ, µ) by σ(a) =
0.9, σ(b) = 0.5, σ(c) = 0.7, σ(d) = 0.8 and µ(ab) = 0.5, µ(ac) = 0.4, µ(ad) = 0.7.
Then G : (σ, µ) is defined by µ(ac) = 0.3, µ(ad) = 0.1, µ(bc) = 0.5, µ(bd) =
0.5, µ(cd) = 0.7. Here tdG(ab) = 1.6, for all ab ∈ E, but in G : (σ, µ),
dG(ac) = 1.3 = dG(bd), dG(ad) = 1.5 = dG(bc), dG(cd) = 1.4 and tdG(ac) =
1.6 = tdG(ad), tdG(bc) = 2, tdG(bd) = 1.8, tdG(cd) = 2.1. Therefore G : (σ, µ)
is 1. 6 - totally edge regular fuzzy graph, but G : (σ, µ) is neither edge regular
fuzzy graph nor totally edge regular fuzzy graph.
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Theorem 3. Let µ(x, y) = [σ(x)∧σ(y)]/2, for all x, y ∈ V . Then G : (σ, µ)
is a k - edge regular fuzzy graph if and only if complement of G : (σ, µ) is also
k - edge regular.

Proof. Let

µ(x, y) = [σ(x) ∧ σ(y)]/2, for all x, y ∈ V. (1)

By the definition of complement, µ(x, y) = σ(x)∧σ(y)−µ(xu), for all x, y ∈ V .
Therefore

µ(x, y) = [σ(x) ∧ σ(y)]/2,

for all x, y ∈ V [by(1)]. Hence

µ(x, y) = µ(x, y). (2)

Therefore
dG(xy) =

∑

x 6=z

µ(xz) +
∑

z 6=y

µ(zy)− 2µ(xy).

By (2), dG(xy) =
∑

x 6=z µ(xz) +
∑

z 6=y µ(zy) − 2µ(xy). Therefore dG(xy) =

dG(xy), for all xy ∈ E. Hence G : (σ, µ) is k - edge regular fuzzy graph if and
only if complement of G : (σ, µ) is also k - edge regular.

Remark 4. The converse of theorem 3 need not be true.
For example, consider G∗ : (V,E), where

V = {a, b, c, d}

and
E = {ab, ac, ad, bc, bd, cd} .

Define G : (σ, µ) by σ(a) = 0.9, σ(b) = 0.7, σ(c) = 0.7, σ(d) = 0.7 and µ(ab) =
0.4, µ(ac) = 0.35, µ(ad) = 0.3, µ(bc) = 0.4, µ(bd) = 0.35, µ(cd) = 0.3. Then G :
(σ, µ) is defined by µ(ab) = 0.3, µ(ac) = 0.35, µ(ad) = 0.4, µ(bc) = 0.3, µ(bd) =
0.35, µ(cd) = 0.4. Here dG(ab) = 1.4, for all ab ∈ E and dG(ab) = 1.4, for all
ab ∈ E. Therefore G : (σ, µ) and G : (σ, µ) are edge regular fuzzy graphs, but
µ(x, y) 6= [σ(x) ∧ σ(y)]/2,for x, y ∈ V .

Theorem 5. Let µ(x, y) = [σ(x)∧σ(y)]/2, for all x, y ∈ V . Then G : (σ, µ)
is a k - totally edge regular fuzzy graph if and only if complement of G : (σ, µ)
is also k - totally edge regular.

Proof. Proof is similar to proof of theorem 3.
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Theorem 6. Let G : (σ, µ) be a fuzzy graph on a regular graph G∗ : (V,E)
such that µ is a constant function. Then G : (σ, µ) and G : (σ, µ) are edge

regular fuzzy graphs.

Proof. Let µ(e) = c, for all e ∈ E, where c is a constant. Let G∗ be k -
regular. Then dG∗(x) = k, for all x ∈ V , where k is a constant. First let us
prove that G : (σ, µ) is an edge regular fuzzy graph. By the definition of edge
degree, dG(xy) =

∑

x 6=z µ(xz) +
∑

z 6=y µ(zy)− 2µ(xy). Therefore

dG(xy) =
∑

x 6=z

c+
∑

z 6=y

c− 2c = cdG∗(x) + cdG∗(y)− 2c

or dG(xy) = ck + ck − 2c = 2c(k − 1). Hence G : (σ, µ) is an edge regular
fuzzy graph. Next we prove that G : (σ, µ) is an edge regular fuzzy graph. Let
|V | = n. Then G

∗
is (n − 1 − k) - regular. By the definition of complement,

µ(xy) = σ(x) ∧ σ(y)− µ(xy), for all x, y ∈ V ,

µ(xy) =

{

c ∧ c− c, ∀xy ∈ E,

c ∧ c, otherwise.

Therefore µ(xy) = c, for all xy ∈ E. By the definition of edge degree, dG(xy) =
∑

x 6=z µ(xz) +
∑

z 6=y µ(zy)− 2µ(xy), for all xy ∈ E. Therefore

dG(xy) =
∑

x 6=z

c+
∑

z 6=y

c− 2c = cd
G

∗(x) + cd
G

∗(y)− 2c.

Hence dG(xy) = 2c(n − k − 2), for all xy ∈ E. Hence G : (σ, µ) is an edge
regular fuzzy graph.

Corollary 7. Let G : (σ, µ) be a strong fuzzy graph such that σ is a

constant function and let G∗ be a regular graph. Then G : (σ, µ) and G : (σ, µ)
are edge regular fuzzy graphs.

Proof. Given G : (σ, µ) is a strong fuzzy graph such that σ is a constant
function. Then µ is a constant function. Therefore the result follows from
theorem 6.

Remark 8. The converse part of theorem 6 and corollary 7 need not be
true. It can be seen from the following example. Consider G∗ : (V,E) where
V = {a, b, c, d} and E = {ab, ac, bc, cd}. Define G : (σ, µ) by σ(a) = 0.4, σ(b) =
0.6, σ(c) = 0.4, σ(d) = 0.4 and µ(ab) = 0.2, µ(ac) = 0.4, µ(bc) = 0.4, µ(cd) =
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0.2. Then G : (σ, µ) is defined by µ(ab) = 0.2, µ(ad) = 0.4, µ(bd) = 0.4, µ(cd) =
0.2. Here dG(ab) = 0.8, for all ab ∈ E and dG(ab) = 0.8, for all ab ∈ E.
Therefore G : (σ, µ) and G : (σ, µ) are edge regular fuzzy graphs, but σ and µ
are not constant functions, G : (σ, µ) is not a strong fuzzy graph and G∗ : (V,E)
is not a regular graph.

4. Edge Regular and Totally Edge Regular Property

of µ-Complements

Result 9. When G∗ is complete, the complement of a fuzzy graph G is
same as the µ - complement of G.

Proof. By the definition

µµ(xy) =

{

σ(x) ∧ σ(y)− µ(xy), if µ(xy) > 0,

0, if µ(xy) = 0.

Therefore µµ(xy) = σ(x) + σ(y) − µ(xy), for all x, y ∈ V . Hence µµ(xy) =
µ(xy),forall x, y ∈ V and xy ∈ E. Also σ(x) = σ(x) = σµ(x), for all x ∈ V .
Hence the result.

Remark 10. If G : (σ, µ) is an edge regular fuzzy graph, then Gµ : (σ, µµ)
need not be edge regular fuzzy graph. For example, consider G∗ : (V,E) where
V = {a, b, c, d} and E = {ab, ad, bc, bd, cd}. Define G : (σ, µ) by σ(a) =
0.9, σ(b) = 1, σ(c) = 0.8, σ(d) = 1 and µ(ab) = 0.4, µ(ad) = 0.4, µ(bc) =
0.5, µ(bd) = 0.9, µ(cd) = 0.5. Then Gµ : (σ, µµ) is defined by µµ(ab) =
0.5, µµ(ad) = 0.5, µµ(bc) = 0.3, µµ(bd) = 0.1, µµ(cd) = 0.3. Here dG(ab) = 1.8,
for all ab ∈ E, dGµ(ab) = dGµ(ad) = dGµ(bc) = dGµ(cd) = 0.9, dGµ(bd) = 1.6
and tdGµ(ab) = 1.4 = tdGµ(ad), tdGµ(bc) = 1.2 = tdGµ(cd), tdGµ (bd) = 1.7.
Therefore G : (σ, µ) is 1. 8 - edge regular fuzzy graph, but Gµ : (σ, µµ) is
neither edge regular fuzzy graph nor totally edge regular fuzzy graph.

Remark 11. If G : (σ, µ) is totally edge regular fuzzy graph, then Gµ :
(σ, µµ) need not be edge regular fuzzy graph. For example, consider G∗ :
(V,E) where V = {a, b, c, d, e, f} and E = {ab, bc, cd, de, ef, fa}. Define G :
(σ, µ) by σ(a) = 0.9, σ(b) = 0.6, σ(c) = 0.5, σ(d) = 0.7, σ(e) = 0.6, σ(f) = 0.7
and µ(ab) = 0.6, µ(bc) = 0.4, µ(cd) = 0.3, µ(de) = 0.6, µ(ef) = 0.4, µ(fa) =
0.3. Then Gµ : (σ, µµ) is defined by µµ(bc) = 0.1, µµ(cd) = 0.2, µµ(ef) =
0.2, µµ(fa) = 0.4. Here tdG(ab) = 1.3, for all ab ∈ E, dGµ(bc) = 0.2, dGµ (cd) =
0.1, dGµ (ef) = 0.4, dGµ (fa) = 0.2 and tdGµ(bc) = 0.3 = tdGµ(cd), tdGµ (ef) =
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0.6 = tdGµ(fa). Therefore G : (σ, µ) is 1. 3 - totally edge regular fuzzy graph,
but Gµ : (σ, µµ) is neither edge regular fuzzy graph nor totally edge regular
fuzzy graph.

Theorem 12. Let µ(xy) = [σ(x)∧σ(y)]/2, for all xy ∈ E. Then G : (σ, µ)
is a k - edge regular fuzzy graph if and only if Gµ : (σ, µµ) is also k - edge regular.

Proof. Given

µ(xy) = [σ(x) ∧ σ(y)]/2, for all xy ∈ E. (3)

By the definition of µ - complement

µµ(xy) =

{

σ(x) ∧ σ(y)− µ(xy), if µ(xy) > 0,

0, if µ(xy) = 0.

Therefore µµ(xy) = σ(x) ∧ σ(y)− [σ(x) ∧ σ(y)]/2, for all xy ∈ E (see (3)), or

µµ(xy) = [σ(x) ∧ σ(y)]/2,

for all xy ∈ E. Hence

dGµ(xy) =
∑

x 6=z

µµ(xz) +
∑

z 6=y

µµ(zy)− 2µµ(xy)

=
∑

x 6=z

µ(xz) +
∑

z 6=y

µ(zy)− 2µ(xy) = dG(xy),

for all xy ∈ E. Hence G : (σ, µ) is a k - edge regular fuzzy graph if and only if
Gµ : (σ, µµ) is also k - edge regular.

Remark 13. The converse part of theorem 12 need not be true. In the
following example, G : (σ, µ) and Gµ : (σ, µµ) are edge regular, but µ(xy) 6=
[σ(x) ∧ σ(y)]/2, for all xy ∈ E. Consider G∗ : (V,E) where V = {a, b, c, d}
and E = {ab, bc, cd, da}. Define G : (σ, µ) by σ(a) = 0.9, σ(b) = 0.7, σ(c) =
0.8, σ(d) = 0.7 and µ(ab) = 0.4, µ(bc) = 0.4, µ(cd) = 0.3, µ(da) = 0.3. Then
Gµ : (σ, µµ) is defined by µµ(ab) = 0.3, µµ(bc) = 0.3, µµ(cd) = 0.4, µµ(da) = 0.4.
Here dG(ab) = 0.7 = dGµ(ab), for all ab ∈ E.

Theorem 14. Let µ(xy) = [σ(x)∧σ(y)]/2, for all xy ∈ E. Then G : (σ, µ)
is a k - totally edge regular fuzzy graph if and only if Gµ : (σ, µµ) is also k -

totally edge regular.

Proof. Proof is similar to proof of theorem 12.
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5. Edge Adjacency Sequences

Definition 15. The adjacency sequence of an edge e in a fuzzy graph G
is defined as a sequence of membership values of edges adjacent to e arranged
in increasing order. It is denoted by as(e).

Remark 16. 1. The number of elements in as(e) is the degree of e in G∗.

2. The sum of all elements in as(e) is the degree of e in G.

Example 17. Consider the fuzzy graph in the following example.

Consider G∗ : (V,E), where V = {a, b, c, d} and E = {ab, ad, bd, cd}. Define

G : (σ, µ) by σ(a) = 0.6, σ(b) = 0.7, σ(c) = 0.8, σ(d) = 0.5 and µ(ab) =
0.4, µ(ad) = 0.5, µ(bd) = 0.6, µ(cd) = 0.5. The adjacency sequences of the edges

are as(ab) = (0.5, 0.6), as(ad) = (0.4, 0.5, 0.6), as(bd) = (0.4, 0.5, 0.5), as(cd) =
(0.5, 0.6).

Remark 18. When G is edge regular, the underlying graph G∗ need
not be edge regular. For example, consider G∗ : (V,E) where V = {a, b, c, d}
and E = {ab, ad, bd, cd}. Define G : (σ, µ) by σ(a) = 0.4, σ(b) = 0.7, σ(c) =
0.6, σ(d) = 0.5 and µ(ab) = 0.2, µ(ad) = 0.4, µ(bd) = 0.4, µ(cd) = 0.2. This is
an edge regular fuzzy graph of degree 0. 8 whose underlying graph is not edge
regular. Also as(ab) 6= as(bd). Hence in an edge regular fuzzy graph, all the
edges need not have the same adjacency sequence.

Remark 19. Even if both G and G∗ are edge regular, then all the edges
need not have the same adjacency sequence. For example, consider G∗ : (V,E)
where V = {a, b, c, d} and E = {ab, ac, ad, bc, bd, cd}. Define G : (σ, µ) by
σ(a) = 0.4, σ(b) = 0.7, σ(c) = 0.6, σ(d) = 0.5 and µ(ab) = 0.3, µ(ac) =
0.2, µ(ad) = 0.2, µ(bc) = 0.2, µ(bd) = 0.2, µ(cd) = 0.1. Here both G and G∗

are edge regular. But as(ad) 6= as(cd).

Theorem 20. If G∗ is a triangle, the degree of an edge in G is the degree

of the vertex opposite to it in G.

Proof. Consider the fuzzy graph G on a triangle G∗. Let the vertices of G be
a, b and c. In G, opposite edge of the vertex a is bc, opposite edge of the vertex
b is ca and opposite edge of the vertex c is ab. Then dG(a) = µ(ab) + µ(ac) =
dG(bc), dG(b) = µ(bc) + µ(ba) = dG(ca) and dG(c) = µ(ca) + µ(cb) = dG(ab).
Hence the degree of an edge in G is the degree of the vertex opposite to it in
G.

Theorem 21. Let G∗ be a triangle. Then G is an edge regular fuzzy

graph if and only if µ is a constant and all the edges have the same adjacency
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sequence.

Proof. Let G∗ be a triangle. Then G∗ is 2 - regular and 2 - edge regular.
Assume that µ is a constant and all the edges have the same adjacency sequence.
Then G is an edge regular fuzzy graph.

Conversely, assume that G is k - edge regular fuzzy graph. Let the vertices
of G be v1, v2 and v3. Let the membership values of the three edges v1v2, v2v3
and v3v1 be k1, k2, k3 respectively, where 0 ≤ ki ≤ 1, i = 1, 2, 3.

Since d(vivj) = k, i, j = 1, 2, 3 and i 6= j, we have

k1 + k2 =k, (4)

k1 + k3 =k, (5)

k2 + k3 =k. (6)

Equations (4)-(5) imply k2 − k3 = 0 ⇒ k2 = k3.
Equations (5)-(6) imply k1 − k2 = 0 ⇒ k1 = k2.
Hence k1 = k2 = k3. Substituting k1 = k2 in (4), we get k1 = k/2.
Therefore k1 = k2 = k3 = k/2. Hence each edge has the same adjacency

sequence (k/2, k/2) and µ is a constant.

Theorem 22. Let G∗ be a complete graph on four vertices. Then G is k
- edge regular if and only if sum of the membership values of edges in each 1 -

factor is k/2.

Proof. Let G∗ be a complete graph on four vertices. Then G∗ is 4 - edge
regular and every edge in G∗ is adjacent to two 1 - factors. Assume that sum
of the membership values of edges in each 1 - factor is k/2. Then G is k -
edge regular. Conversely, assume that G is k - edge regular fuzzy graph. To
prove that sum of the membership values of edges in each 1 - factor is k/2.
Let the vertices of G be v1, v2, v3 and v4. Let the membership values of the
six edges v1v2, v2v3, v3v4, v4v1, v1v3 and v2v4 be k1, k2, k3, k4, k5, k6 respectively,
where 0 ≤ ki ≤ 1, i = 1, 2, 3, 4, 5, 6. Since G is k - edge regular fuzzy graph,
d(vivj) = k, i, j = 1, 2, 3, 4 and i 6= j. Hence, we have

k4 + k5 + k6 + k2 =k, (7)

k1 + k5 + k6 + k3 =k, (8)

k4 + k5 + k6 + k2 =k, (9)

k1 + k5 + k6 + k3 =k, (10)

k1 + k4 + k2 + k3 =k, (11)

k1 + k2 + k3 + k4 =k. (12)
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Equations (7)-(8) imply k2 + k4 − k1 − k3 = 0 ⇒ k2 + k4 = k1 + k3. Using
this fact in (11), we receive k2 + k4 = k/2 = k1 + k3.

Equations (9)-(11) imply k5 + k6 − k1 − k3 = 0 ⇒ k5 + k6 = k1 + k3
⇒ k5 + k6 = k/2.

Therefore k1+k3 = k2+k4 = k5+k6 = k/2. Hence sum of the membership
values of edges in each 1 - factor is k/2.
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